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(a). A portion of the satellite imagery, showing
the sample house selected for training in red
rectangular boxes and for validation in yellow
rectangular boxes.

(b). ANN Classification and Identification of the RS
scales with and without wavelets for some
example sample houses and validation using visual
recognition and ground truth information
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Welcome to Wind Wiki!

Wiki, see the FAQs below.

Welcome to the Wind-Wiki, a virtual encyclopedia written and maintained by VORTEX-Winds members to provide the
most up to date information on wind hazards and their effects on structures. The Wind-Wiki is organized into four major
subject areas: Micrometeorology, Aerodynamics and Aeroelasticity, Structural Dynamics, and Experimental Methods.
Since VORTEX-Winds is committed to providing the most reliable information about wind hazards and its effects on
structures, VORTEX-Winds provides dedicated editorial oversight on all information contributed to each subject area.
Simply click on one of the subjects below to enter the Wind-Wiki. For more information on how to contribute to the Wind-
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-The Era of Tall Buildings: History and Development: Sang
Dae Kim (Korea University)

-Analysis on Weather Characteristic in Myanmar; Win Zaw
(Ministry of Construction Myanmar)

- Monitoring, Simulation and Their Hybrid Approaches for
Investigation of Wind Effects on Long-span Bridges: Hui Li
(Harbin Institute of Technology)

- Issues with validation of urban flow and dispersion CFD
models: Michael Schatzmann (The University of Hamburg)

-Wind Hazard Resilient Cities: New Challenges: Kishor.
Mehta (Texas Tech University)

-Wind and Rain Induced Effects on Stay Cables and Typical

Wind Effects News

Page 9

Prisms: Yaojun Ge (Tongji University)

-Wind hazard in harbour areas: Giovanni Solari (University
of Genoa)

tyyar—E:

- Urban disasters from the structural design perspective
-Hurricane-related wind risks

- Damage Detection Analysis using Satellite Image

- Challenges to couple engineering CFD and meteorological
models for analyzing urban climate change

- Effects of Short-rise-time Gust on Structures

- Countermeasures for the disasters and Tornado-related
issues

-Wind-Resistant Design
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- Overview of ventilation studies and measures to improve
the environmental performance of buildings : Lun Isaac

EE3 HeeChang LIM#EIBICLR 70— T AE—F

(Tokyo Polytechnic University)

-Building simulation on reduction of cooling loads and

thermal comfort by using cross-ventilation in Japan and
Korea: Kenji Tsukamoto (Tokyo Polytechnic University)

- Gap effect of multiple buildings on surface pressure under

turbulent boundary layer: Hyung-Bong YANG (Pusan
National University)

- Study of cross- ventilated indoor air flow characteristics

by frequency analysis: Tomoyuki Endo (Kanto Gakuin
University)

-Human-subject experiments on evaporative cooling of

sweating using climate controllable wind tunnel: Masaaki
Ohba (Tokyo Polytechnic University)

- Study on the turbulence flow around various cavities : Hee-

Chang LIM (Pusan National University)

-Domain decomposition technique applied to evaluation

of cross- ventilation performance of various opening
conditions of a building: Takashi Kurabuchi, Kumiko
Tsuruta (Tokyo University of Science)
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-The Great East Japan Earthquake Disaster 2011, Prof. Yukio
Tamura, TPU

-Wind Pressures on Multi-Level Flat Roof of Medium-Rise
Buildings, Mr. Jinxin Cao, TPU

- Interference Effect on Local Peak Pressure between Two
High-Rise Buildings with Different Shapes, Mr. Yi Hui,
TPU

-Wind-Induced Dynamic Behavior of a Monocoque Steel
Chimney with Ring Stiffeners, Mr. Zhibin Ding, TPU
-Research at Wind Tunnel of Chang’an University, Prof. Jia
Wau Li, CAU
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Fetch effect of surrounding buildings on wind
pressures acting on low-rise building
YongChul Kim, Akihito Yoshida, Yukio Tamura

1. Introduction

As most low-rise buildings are built in large groups, one
of the problems associated with prediction of wind loads
on them is a lack of reliable and available experimental
data. Furthermore, the complex nature of the problem
makes it difficult to formulate analytical procedures for
predicting wind load effects on low-rise buildings in large
groups. As a result, very limited design data are available
to engineers/designers. Moreover, the current standards
and codes of practice, such as RLB-AIJ (2004), give little
guide to engineers/designers in assessing wind loads in a
situation where unusual wind effects are expected due to the
proximity of surrounding buildings, implying the need for
wind tunnel tests.

Most of these previous studies considered small groups
of surrounding buildings (Sun et al., 2008), highlighting the
fact that shielding effects increase with number of nearby
structures. In the present work, in order to investigate the
effect of a large group of surrounding buildings on wind
pressures applied to a low-rise building, systematic wind

Target model (moves

Spires _
to downstream side)

Roughness blocks

H I O I I I = I e

\,—r//

pressure measurements were conducted. The parameters
considered include area density C,, and upstream distance L.

2. Wind tunnel test

Wind tunnel tests were conducted at the Tokyo
Polytechnic University in Japan. A 0.1Im cubic model was
used for the target low-rise building, and as dummy models,
the same sized cubes made of wood were used. The target
model was moved to the downstream side at specified
intervals, determined by area density. Area density, C,, was
defined as the ratio of the area covered by the building to the
building lot area, and changed as 6%, 11%, 16%, 25%, and
44%. A schematic of the wind tunnel test is shown in Figure
1 and the test cases are summarized in Table 1. For the peak
coefficients, the Cook-Mayne method was applied for the
moving averages of 0.05s in full time scale. A turbulent
boundary layer with a power-law exponent of 0.2 (U,~7.2m/s,
1,,~23%) was simulated at L/B=0, as shown in Figure 2. The
wind direction was fixed at 0°, with the incident wind normal

to the model surface.

o o o o (o]

Incident flow
Dummy models

g (1 2 [1 & [1 @ [1

—» Upstream distance, Lt e
L dist

Figure 1. Schematic of wind test

Table 1. Summary of wind tunnel tests

Area density No- Of_ Meas. range Block dist. Arrangement
meas. point
6% (6.25%) 6 0B ~ 48B 3B Standard
11% (11.1%) 9 0B ~54B 2B
16% 9 0B ~ 50B 1.5B
25% 6 0B ~ 48B 1B
44% (44.4%) 9 0B ~54B 0.5B
0% 1
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Figure 2. Incident flow condition

3. Results of wind tunnel test

After pressure measurements, the local top wind speeds
were measured at each measurement point for all area
densities. Figure 3 shows the variation of local mean wind
speed Uy .. measured at model height for various area
densities C,. Generally, local mean wind speeds decrease
with increasing area density, and show almost constant
values after L/B=15 regardless of area density. Using the
mean wind speeds in Figure 3, two normalization methods
were adopted for the wind pressure coefficients. In the first,
the top wind speed measured at the first measurement point
was used (Eg. (1a)), and in the other, the local top wind speed
measured at each measurement point was used (Eq. (10)).

P-P

static local

= 2
0.50U 3 sncident iow

P-P

static ,local

C = static,local
0.5pU 121 Jocal (1b)

p p.local

(1a);

where C, and C, o = Wind pressure coefficient and local
wind pressure coefficient; P = wind pressure applied to model
surface; Py 0ca = Static pressure at each measurement point,
p = air density and U, igen 0w @Nd Uy = top wind speed

at first measurement point and local top wind speed.
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Figure 3. Variation of local mean wind speed Uy, ca

3.1. Mean wind pressure coefficients

Figure 4 shows the variation of mean C, .., and mean
C, for mid-width center when the area density was 11%
and 44%. The thick dotted line indicates an area density
of 0%, i.e. an isolated model. The coefficients for the first
measurement point, shown as a solid circle, are almost the
same as those for an isolated model. As the target model
goes to the downstream side when C,=11%, the coefficients
on the windward surface decrease and those on the leeward
surface and roof surfaces increase. As the area density
becomes higher (C,=44%), the local mean wind pressure
coefficients become almost constant on all surfaces, showing
negative values ranging from -0.5 to -1.0. The difference and
variation trend among measurement points becomes more
obscure as the area density increases, and negative values on
the windward surface are first observed at an area density of
16%. When wind pressures are normalized by the velocity
pressure at the first measurement point, the mean wind
pressure coefficient, mean C,, increases drastically, showing
very small values ranging from -0.25 to 0.

(.'quilL‘n

= | Il maesled

- e 3
- g i 7 &!
’,,»53-&-1*4 '2-:! sh ‘."/ -
=
E

) 1
Codihe Cr=dili
“-'l:‘"._."“c I aoated model 0, g ——— - [sclatedd medel
i 5
i [|| — —_— ]
b A g e £ e = W o vl
- . = e == g3 = ‘ i
- o E f
& =1 - r
% i
ko] 1.5
G-
5y i
=2
A B [§]
c D .

(a) mean Cp,lc»cal (CA:]J-%)

(b) mean C,,5c (Co=44%)

(c) mean C,, (C,=44%)

Figure 4. Variation of mean C,,,,,, and mean C,, for mid-width center

3.2. Fluctuating wind pressure coefficients
Figure 5 shows the variation of rms C ..., when area
density is 6% and 44%, and rms C, for 44% for various L/

B. Although when the area density is low (C,=6%), the rms
C,10caS are almost the same as for the isolated model except
at the windward corners, when the area density increases,
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the rms C, ,.oS become larger than that of the isolated
model after the second measurement point. Note that when
area density is 6%, the largest values are observed at the
windward corner on the roof for the mid-width center, but
when area density increases, the largest values appear on
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the windward surface at mid-width center. In case of Figure
5(c), which is normalized by the velocity pressure at the first
measurement point, all the rms Cs are smaller than that of
the isolated model except at the windward corner on the side

surface at the first measurement point.
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(a) rms Cp,local (CAZG%)

(b) rms Cp,lucal (CA:44%)

(©) rms C,, (C,=44%)

Figure 5. Variation of rms C,,,; and rms C, for mid-width center

3.3 Peak wind pressure coefficients

The largest and smallest values were selected from among
the 125 pressure taps as peak wind pressure coefficients,
and the variation of peak wind pressure coefficients is
shown in Figure 6. The max C, ., increases greatly with
increasing area density. At relatively high area densities, in
the present work higher than 16%, the value of max C, .S
shows almost twice that of the isolated model. Note that
when area densities are relatively high, there seems to be
little difference in max C,oc., @and the max C,,..S becomes
constant immediately after L;/B=15. The min C, s are
generally smaller than that of the isolated model, but the
differences among area densities are not as significant as
the max C, oo Although the min C,,.,S vary little with
upstream distance, it seems that the variation becomes
constant immediately after L;/B=15 such as max C,, oc,-

4. Conclusion

The proximity effects are identified to be important in
determining wind induced pressures. These proximity
effects increase with area density and cannot be adequately
compensated for by the model test on the isolated model.
Because of the presence of surrounding buildings, as the
target model moves to the downstream side, the wind
pressures (P-Pguicoca) decrease, and the local top wind speed
also decreases. However, the decreasing ratio of the square
of wind speeds (i.e. 0.5pU}; ,c2) IS More significant than
that of the wind pressures, giving much larger local peak

wind pressure coefficients. In the present work, max Coc.S
greatly increase, showing almost the same absolute values as
the min C,,,.,s for high area densities. Based on the results,
it can be said that the effects of surrounding buildings should
be considered within L;/B=15.

g —— U=
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& o ,,.-V"W i 1|—— co=tm
- — Ca=25%
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2 max Gy of isclated model (23.23) ol
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o ) min Cp of isolnted model (3-5.23)
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9
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Figure 6. Variation of peak C, o,
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Wind pressures on multi-level flat roofs of

medium-rise buildings

Jinxin Cao, Akihito Yoshida, Yukio Tamura

1 INTRODUCTION

Multi-level flat roofs are widely used in building
structures such as public multi-storied buildings, large scale
apartments, and industrial buildings. For structural design,
the main concern for buildings with these roof types is snow
drift, while negative wind pressure can be directly referred
to present design standards for simple flat roofs (Stathopoulos
and Luchian, 1990). Therefore, very few standards or
previous researches have focused on wind pressures on such
roofs. However, recently, flat roofs as well as multi-level flat
ones, have been providing excellent places for setting green
roofing systems and other energy saving systems. In order
to evaluate the wind resistant performance of such rooftop
systems, wind pressure characteristics of multi-level flat
roofs with different geometries need to be examined as a
prerequisite study.

Positive as well as negative wind pressures on multi-level
flat roofs of medium-rise buildings are mainly discussed
while most previous studies (Stathopoulos and Luchian,
1990; Kikuchi, etc, 2009) have focused on negative values.
Peak and area-averaged positive pressure coefficients
are evaluated and the effects of step geometry and wind
direction are considered. Comparison is made between
simple flat roofs and multi-level flat roofs and between

(@St

(b) M1

3 RESULTS AND DISCUSSION
3.1 Data processing

The original time series of wind pressure coefficients
at a certain point i C,,(i,t) can be calculated as C,,(i,t) =
p(i,H)/q,, where p(it) and g, are the measured wind pressure

experimental results and related previous ones and standards
as well.

2 EXPERIMENTAL CONDITIONS

Wind tunnel experiments were carried out in a Boundary
Layer Wind Tunnel in Tokyo Polytechnic University, Japan.
Open terrain characteristics were simulated and velocity
scale 1/4 was adopted. The power law exponent o of mean
wind speed was 0.19 and the corresponding turbulence
intensity at the roof height was 20%.

The height of the prototype building was adopted as 30m
and comprised 9 stories of 3.3m. The geometry scale was
1:67 (Fig 1), which was decided as relatively large consider-
ing future study on small-sized roof-top systems and the
limitation of blockage ratio.

Pressure taps on the roof in this study were distributed
uniformly rather than concentrated at corners and edges to
meet the requirements for different roof configurations. 324
pressure taps were installed at 25mm spacing. Wind pressure
measurements were conducted with a sampling frequency
of 781Hz and a sampling period 36 seconds for each sample,
corre-sponding to 46Hz and 10 minutes in full scale. Each
test case was sampled 10 times. Wind direction was changed
at intervals of 5 degrees for each test case.

(c) M2
Fig 1. Building model and coordinate system (unit:mm)

(d) M3

and reference velocity pressure at the top of the roof. An
“Equivalent time averaging” method (Holmes, 2004) was
used to determine the wind load acting on a finite area
from point pres-sure. 0.005s corresponding to 0.08s in full
scale was used for time averaging, from C,(i,t) to C,(i).
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Mean and fluctuating pressure coefficients, C, and ¢’ ,
were statically acquired and the peak pressure coefficients
including positive ¢, and negative ¢, were calculated by the
“Cook-Mayne method” using 10 samples for each case.
3.2 Mean and fluctuating pressure coefficients

Figure 2(a) and (b) showed mean and fluctuating pressure
coefficients of Model R1 and M1, respectively, for a wind
direction of O degrees. As expected, both the absolute mean

and fluctuating values for R1 decreased from the windward
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to the leeward edge, and all the mean values over the whole
roof were negative. However, for model M1 with one step,
positive mean values occurred near the intersection between
the two levels. Moreover, the magnitudes of fluctuating
values in this region were comparable with those for the
windward edge. This indicated that the wind pressure near
the intersection between the two levels for a multi-level flat
roof was strongly affected by the step and the quasi-steady
assump-tion was no longer applicable in such regions.

[ 0.4 -
0.4
0.3
0.2
0.2
0.4 0.4
0.6
. 19) N & N
0.1 0 0.1 7 0A
06— -056] 0.5 0.4 0.5
0.2 0.4
-0.2 0.2
(a) S1 (b) M1 Fig 3. ¢, (Upper) and ¢, (Lower) for S1

Fig 2. Cp (Upper) and C’, (Lower) (6=0°)

3.3 Local peak pressure coefficients

From the design viewpoint, one is interested in the most
unfavorable values of local peak pressure coefficients from
the results for all the directions. Results including minimum
negative and maximum positive peak pressure coefficients
for Model S1 are shown in Figure 3. The most unfavorable
negative value occurred at the corner of the simple flat roof,
corresponding to the wind direction near 45 degrees, due to
a conical vortex; and the peak posi-tive value on the simple
flat roof was extremely low.

Results for the two-level roof with one step are shown

in Figure 4. Taking model M1 as an example (Fig 4(a)), the
smallest negative peak pressure coefficient was recorded
at the corner of the high-roof section and the value is
comparable in magnitude with that for the simple flat roof.
High suction pressure coefficients, which were a little
smaller than those for the high roof section, were also seen at
the corner of the low roof section and the edge area near the
intersection as well. The most unfavorable positive pressure
coefficients were measured at the intersection between two
levels as a result of flow separation, with the corresponding

wind direction of 0 degrees for multi-level cases.
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Zone designations for two-level flat roofs with three
different step heights are shown to demonstrate the effect of
step height on local peak pressure coefficients. The idea for
dividing the zones was similar to the principle used in the
present wind load standards.

For negative pressures, a simple flat roof of a 30m-high
building can be divided into three parts, indicating corner,
edge and interior (ASCE7-05, 2005). Adopting the same zone
designation for the simple flat roof in the present study, the
peak pressure coefficients in the three zones were (D ‘Cp‘ >
6, @ 5 <|Gy| < 6 and ®)|Gy| < 5, respectively. Following such
partition of peak pressure coefficients, the high roof area for

two-level flat roofs can be similarly divided into three parts:
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R1 (corner), R2 (outer edge) and R3 (inner edge and inte-
rior). For the low roof, R2 and R3 zones are similar to those
of the high roof while two new zones, R4 and R5, were used
for the outer corner and inner corner areas, respectively, in-
stead of R1. For positive pressures, since ASCE7-05 was the
only code related to this roof configuration, related contents
were referred, although the building height in this study was
beyond the scope of application of ASCE7-05. Two zones,
Z2 and Z1, were adopted to represent high positive pressure
region at the intersection border between the two levels and
low positive pressure region at other parts of the roof. The
width of zone Z2 was 1.5 times of step height.

R
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-3
" 25 M i 25 E e
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(a) M1 (b) M2 (c) M3

Fig 4. Local peak pressure coefficients for two-level flat roofs and zone designations ( ¢, (Upper) and ¢, (Lower))

The effects of step height on peak pressure coefficients
in each zone discussed above are shown in Figure 5. For
negative values, there is no obvious difference for zone R1
for the three models. For zone R4, the values decrease with
increase in step height, from -9.5 to -6.8. It is interesting
that in zone R5, the values remain almost constant despite
the change in step height, and the value is around -7.5. For
positive values, the maximum values in zone 2 increase

significantly from 2.3 to 3.2 with increase in step height from

one story to three stories. The variation between the two
unfavorable values indicates that the design positive pressure
coefficients in this zone are highly dependent on the step
height. The values in zone 1 remain almost constant, which
reflect the reasonableness of the zone designation for positive
pressures on this roof configuration. Similar results of
maximum positive peak pressure coefficients were reported
by Kikuchi, et al (2009), but the values were a bit lower since
an averaging time of 1s was adopted in their study.
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Fig 5. Effect of step height on peak pressure coefficients

3.4 Comparison with ASCE7-05

For comparison with ASCE7-05, the area-averaged
pressure coefficients were calculated using 1-second moving
averaging time, and pressure coefficients determined
by mean wind speed for 10-minute duration should be

transformed to the ones normalized by 3-second gust wind

Effective Wind Area, m* (ft))
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speed by dividing by a factor of 2.02. Comparison (Fig. 6)
indicates since the positive values increased with increase
in step height, the present values agreed quite well with the
design values when h/H was less than 2/9 and exceeded the
design values when h/H was larger.

l Notes:
ho b
% ASCE  [>3m [1.5h

3.3m|5m
Present|6.7m|10m
10m [15m

Fig 6. Comparison with ASCE7-05

4 CONCLUDING REMARKS

Local peak pressure coefficients on multi-level flat
roofs with different step configurations have been mainly
investigated. The minimum value of negative pressures on
the windward high corner of a stepped roof is similar to the
value for a simple flat roof, while negative pressures on the
low roofs and positive values were highly dependent on step
geometry. Five zones for negative pressures and two zones
for positive ones have been identified to demonstrate the
effects of step height and configuration. Comparison of area-
averaged pressure coefficients with ASCE7-05 indicates
that absolute negative values in the high corner with small
tributary areas in the present study are larger than those in
related contents in the code, while negative values in other
zones and positive values agree closely with the code.
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